Carotenoids and related polyenes. Part 8.¹ Total synthesis of optically active mytiloxanthin applying the stereoselective rearrangement of tetrasubstituted epoxide †

Chisato Tode, Yumiko Yamano and Masayoshi Ito*

Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan

Received (in Cambridge, UK) 1st February 2002, Accepted 14th May 2002 First published as an Advance Article on the web 7th June 2002

Biomimetic synthesis of mytiloxanthin 1 was accomplished with stereoselective rearrangement of the tetrasubstituted epoxide 5 as a key reaction. This is the first total synthesis of optically active all-*E* mytiloxanthin 1.

Introduction

DOI: 10.1039/b201228f

Mytiloxanthin 1, with a unique cyclopentyl enolic β -diketone group conjugated to a polyene chain, was first isolated from *Mytilus californianus* by Scheer in 1940.² Its structure and synthesis of the 9*Z*-isomer were reported by Weedon's group,³ they developed the new synthetic route to polyene β -diketones using Claisen type condensation between polyene esters and methyl ketones. The absolute configuration was determined by Maoka and Fujiwara in 1996.⁴ The cyclopentyl end group of mytiloxanthin 1 is believed 3 to be formed in Nature from the epoxide end group of 5,6-epoxy carotenoids such as halocynthiaxanthin 2 by cleavage of the oxirane ring at the C-5 position and successive ring contraction (a pinacolic rearrangement) (Scheme 1, route *a*).

We found⁵ that the acyclic-tetrasubstituted olefinic compounds and the cyclopentyl ketone were derived by Lewis acid-promoted stereoselective rearrangement of epoxy compounds. Then, the biomimetic total synthesis ^{1,6} of crassostreaxanthin B 3 possessing the acyclic-tetrasubstituted olefinic end group was achieved using this rearrangement reaction.

† We have employed the numbering system used in carotenoids.

In a previous communication, 7 we reported the first total synthesis of mytiloxanthin 1 which includes the new construction of conjugated β -diketones 10a,b through the cyclopentyl compound 8 (Scheme 2), prepared by application of the stereoselective rearrangement of epoxide 5. The present paper is concerned with a full account of the experiments.

Results and discussion

It has been previously reported ⁵⁶ that BF₃·OEt₂-treatment of the epoxide **4** (Scheme 2) with the acetoxy ethyl group at the C-6 position resulted in a very slow reaction and in a low-yield formation of the C-5 diastereomer **6** instead of the desired compound **7**. Efficient preparation of **7** was obtained from the investigation of other Lewis acids with an aminium salt. Thus, treatment of the epoxide **4** with tris(4-bromophenyl)aminium hexachloroantimonate **9**⁸ in CH₂Cl₂ was found to afford **7** in reasonable yield (69%) (Scheme 2). In order to accomplish the biomimetic synthesis of **1** in an analogous manner to the successful synthesis of **3**, the acetoxy group at the C-3 position in **4** was replaced by the *tert*-butyldimethylsilyl (TBS) ether leading to epoxide **5**. The synthetic route of mytiloxanthin **1** was therefore planned through conversion of **5** to the cyclopentyl ketone

Scheme 1

Scheme 2

8 and subsequent construction of enolic β -diketone as shown in Scheme 2.

Starting from the previously prepared optically active alcohol 11 (Scheme 3), acetylation followed by epoxidation with MCPBA gave epoxides 5a,b (5a: 26% from 11; 5b: 48% from 11), in which the relative configurations between the silyloxy and epoxy groups were confirmed by ¹H NMR.⁹ undesired isomer 5b was returned to the tetrasubstituted olefin 12 by the following deepoxidation procedure. Treatment of 5b with TMSCl and NaI in dry acetonitrile 10 followed by silylation gave 12 in 60% yield. Reaction of anti-epoxide 5a with aminium salt 9 provided the desired cyclopentyl compound 8 (63%) and its deprotected alcohol 13 (30%) which was easily resilylated to give 8 (89%). Consequently, the cyclopentyl ketone 8 was synthesized by the stereoselective rearrangement of 5a in high yield. The structure of 8 was determined from the following spectral data. Its IR absorption showed a new carbonyl frequency at 1699 cm⁻¹. In its ¹H NMR spectrum, the methylene signal of the C-7 position appeared at δ 2.75 (t), further downfield than the corresponding signal $[\delta]$ 2.01 (2H, m)] of 5a, in addition, proton signals on the cyclopentane ring were observed analogous to results reported previously.56

Reduction of 8 with NaBH₄ followed by protection of the resulting hydroxy group with p-methoxybenzyloxymethyl (PMBM) chloride¹¹ gave compound 14 (62% from 8), which was reduced with LAH to provide the alcohol 15 (99%). This was subjected to oxidation with o-iodoxybenzoic acid 12 (IBX) to yield the aldehyde 16 (93%), which was reacted with vinyllithium prepared from the vinyl bromide 1713 and Bu'Li followed by oxidation with IBX to provide the ketone 18 (60% from 16). Its structure was confirmed by IR (ν 1669 cm⁻¹) and ¹H NMR data [δ 6.53 (1H, tq-like, J 5, 1, 10-H), 4.26 (2H, m, 11-H₂)]. Deprotection of the PMBM group in 18 with DDQ 11b gave the alcohol 19 (88%), which was treated with DMSO and Ac₂O to afford the enolic β-diketone **20** (36%) and the acetate 21 (33%). Attempts to prepare 20 from 19 under other oxidation conditions (e.g., DMSO-oxalyl chloride, DMSO-TFAA, DMSO-SO₃·Py, NMO-TPAP and IBX) were unsuccessful. The ¹H NMR spectrum of **20** had a broad one-proton signal at δ 16.15 and a sharp one-proton resonance at δ 5.81. In addition, its IR spectrum showed an absorption at 1583 cm⁻¹ exhibiting the presence of a strongly hydrogen-bonded carbonyl group. These spectral data confirmed the presence of a completely enolic β-diketone structure. The structure of 21 was revealed by the following ¹H NMR data [an acetoxy methyl signal appeared at δ 2.14 (3H, s) and a proton signal (δ 4.23) due to C-6 shifted downfield compared to the corresponding signal (δ 4.04) of **19**].

Unfortunately, direct conversion of **20** into the C_{15} - β -diketone aldehyde **10a** (Scheme 2) by deprotection of the allylic TBS group and subsequent oxidation of the resulting alcohol using several reagents (IBX, MnO₂, *etc.*) was unsuccessful, probably due to the instability of the β -diketone part. Thus, after protection of the β -diketone moiety in **20** by acetylation, the resulting acetate **22** was partly deprotected with TBAF to give the allylic alcohol **23** (92%) which was oxidized with IBX followed by removal of another TBS group with HF to afford the C₁₅-aldehyde **10b** (55% from **23**) as shown in Scheme 4. Its ¹H NMR spectrum showed no signal from the TBS group but it did display a pair of doublets attributable to the 11-H (δ 10.17, d, J 7.5) and 10-H (δ 6.37, d, J 7.5).

The Wittig reaction of **10b** with the C₁₀-phosphonium salt **25**¹⁴ in the presence of KOH as a base in a mixture of water and propan-2-ol gave condensed products which, after acid hydrolysis, provided an isomeric mixture of C₂₅-apocarotenals **26** (92% from **10b**). Investigations of alternative conditions (*e.g.*, NaOMe–MeOH, BuⁿLi–CH₂Cl₂–THF) for optimization

Scheme 3 Reagents and conditions: a, Ac₂O, Py; b, MCPBA; c, TMSCl, NaI; d, TBSCl, Et₃N, DMAP; e, 9; f, NaBH₄; g, PMBMCl, Prⁱ₂NEt; h, LAH; i, IBX; j; 17, Bu'Li; k, DDQ; l, DMSO, Ac₂O.

Scheme 4 Reagents and conditions: a, Ac₂O, Et₃N, DMAP; b, TBAF; c, IBX; d, HF; e; HC(OMe)₃, cat. H⁺ then 1 M NaOMe; f, KOH then H⁺; g, 27, KOH.

of this condition resulted in the formation of an unexpected complex mixture. This is presumably owing to the presence of the conjugated β-diketone moiety in the molecule. It was notable that KOH was the best base in the condensation of the conjugated polyenes including the β-diketone part. Finally, the isomeric mixture 26 was condensed with the acetylenic C₁₅-Wittig salt 27¹⁵ in the presence of KOH in propan-2-ol at 0 °C to yield the products (30%), a part of which was separated by repeated preparative HPLC (PHPLC) in the dark to afford all-E mytiloxanthin 1, 9Z-isomer 28, 9Z,11Z-one 29 and unidentified isomers. Three isomers (1, 28 and 29) were respectively obtained in pure form (all-E 1–9Z 28–9Z,11Z 29 = ca. 1 : 1 : 1). Spectral data (UV-VIS, ¹H NMR and CD) of synthetic mytiloxanthins (all-E and 9Z-isomers) were in good agreement with those of natural specimens, respectively.4 Their configurations were confirmed from 2D-nuclear Overhauser enhancement spectroscopy (NOESY) experiments in ¹H NMR spectra (see Experimental section). 9Z,11Z-Stereochemistry in 29 was determined by ¹H NMR data in comparison with those ¹⁶ of 9'Z,11'Z-isomer of halocynthiaxanthin 2 skeletal compound. This is the first biomimetic total synthesis of optically active all-E mytiloxanthin 1 by application of the stereoselective rearrangement of the epoxide 5a with aminium salt 9.

Experimental

UV–VIS spectra were recorded on a JASCO Ubest-55 instrument for ethanol solutions unless otherwise stated. IR spectra were measured on a Perkin Elmer FT-IR spectrometer, model Paragon 1000, for chloroform solutions. ¹H NMR spectra at 300 or 500 MHz were determined on a Varian Gemini-300 or a Varian VXR-500 superconducting FT-NMR spectrometer, respectively, for deuteriochloroform solutions (tetramethylsilane as internal reference). *J*-Values are given in Hz. NMR assignments are given using the carotenoid numbering system. Mass spectra were taken on a Hitachi M-4100 spectrometer. Optical rotations were measured on a JASCO DIP-181 polarimeter ([a]_D-values are in units of 10⁻¹ deg cm² g⁻¹). CD spectra were measured on a Shimadzu-AVIV 62A DS circular dichroism spectrometer.

Column chromatography (CC) was performed on silica gel (Merck Art. 7734). Short-column chromatography (SCC) was carried out on silica gel (Merck Art. 7739) under reduced pressure. Preparative TLC (PTLC) was conducted on silica gel plates (Merck silica gel 60F₂₅₄ precoated plates, 0.5 mm thickness). Low-pressure CC was performed on a Yamazen Low Pressure Liquid Chromatography System using a Lobar column (Merck LiChroprep Si 60). Analytical and PHPLC were carried out on Shimadzu LC-6A, or Waters 510 instruments with UV–VIS detectors.

Standard work-up means that the organic layers or extracts were finally washed with brine, dried over anhydrous sodium sulfate (Na₂SO₄), filtered and concentrated *in vacuo* below 30 $^{\circ}$ C using a rotary evaporator. All operations were carried out under nitrogen or argon. Hexane refers to *n*-hexane.

Rearrangement of the epoxide 4 with aminium salt 9

To a solution of **4** (142 mg, 0.5 mmol) in CH₂Cl₂ (1.5 ml) was added aminium salt **9**⁸ (8.17 mg, 0.01 mmol) at rt and the mixture was stirred at rt for 2 h. Evaporation of the reaction mixture gave a residue, which was purified by SCC (Et₂O-hexane, 2:3) to afford the cyclopentyl compound **7** (98 mg, 69%) as a colorless oil. Spectral data (IR and ¹H NMR) of this compound were in agreement with those of our previous report.^{5b}

2-[(4R)-4-tert-Butyldimethylsilyloxy-2,6,6-trimethylcyclohex-1-enyl]ethyl acetate 12

To a solution of the alcohol **11**¹ (11.9 g, 0.04 mol) in dry Py (20 ml) was added Ac₂O (15 ml) at rt and the mixture was stirred at rt for 16 h. The mixture was poured into ice—water and extracted with Et₂O. The extracts were washed successively with aq. 5% HCl, saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave a residue, which was purified by SCC (Et₂O–hexane, 1 : 9) to afford the acetate **12** (12.6 g, 93%) as a colorless oil; [a]_D²⁶ -42.6 (c 1.22, MeOH); v_{max}/cm⁻¹ 1732 (OAc); δ _H (300 MHz) 0.06 (6H, s, SiMe₂), 0.89 (9H, s, SiBu¹), 1.02 and 1.04 (each 3H, s, *gem*-Me), 1.44 (1H, t, J 12, 2-H_{ax}), 1.61 (1H, m, 2-H_{eq}), 1.65 (3H, s, 5-Me), 1.99 (1H, dd, J 17 and 9, 4-H_{ax}), 2.05 (3H, s, OAc), 2.11 (1H, dd, J 17 and 7, 4-H_{eq}), 2.34 (2H, dt,

J 13 and 8.5, 7-H₂), 3.88 (1H, m, 3-H), 3.99 (2H, t, J 8.5, 8-H₂) (Found: M^+ , 340.2416. $C_{10}H_{36}O_3Si$ requires M, 340.2435).

2-[(1S,4S,6R)- and (1R,4S,6S)-4-tert-Butyldimethylsilyloxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]ethyl acetate 5a and 5b

A solution of MCPBA (72%, 552 mg, 2.29 mmol) in dry CH₂Cl₂ (5 ml) was added to an ice-cooled solution of the acetate **12** (600 mg, 1.76 mmol) in dry CH₂Cl₂ (5 ml). After being stirred at 0 °C for 1 h, the reaction mixture was diluted with Et₂O and washed successively with aq. 1% Na₂S₂O₃, saturated aq. NaHCO₃ and brine. Evaporation of the dried solvent gave a residue, which was purified by SCC (Et₂O-hexane, 1:5) followed by low-pressure CC (Et₂O-benzene, 1:19) to afford the *anti*-epoxide **5a** (174 mg, 28%) and the *syn*-epoxide **5b** (328 mg, 52%) as colorless oils, respectively.

anti-Epoxide 5a. $[a]_{\rm D}^{22}-10.0$ (c 1.00, MeOH); $v_{\rm max}/{\rm cm}^{-1}$ 1733 (OAc); $\delta_{\rm H}$ (300 MHz) 0.03 (6H, s, SiMe₂), 0.86 (9H, s, SiBu'), 1.03 and 1.15 (each 3H, s, gem-Me), 1.18 (1H, dd, J 13 and 9.5, 2-H_{ax}), 1.33 (3H, s, 5-Me), 1.44 (1H, ddd, J 13, 3.5 and 1.5, 2-H_{eq}), 1.64 (1H, dd, J 14.5 and 7.5, 4-H_{ax}), 2.01 (2H, m, 7-H₂), 2.04 (3H, s, OAc), 2.19 (1H, ddd, J 14.5, 5 and 1.5, 4-H_{eq}), 3.77 (1H, m, 3-H), 4.15 (2H, m, 8-H₂) (Found: M⁺, 356.2352. C₁₉H₃₈O₄Si requires M, 356.2380).

syn-Epoxide 5b. $[a]_D^{22}$ - 30.0 (c 1.00, MeOH); v_{max} /cm⁻¹ 1733 (OAc); δ_{H} (300 MHz) 0.03 (6H, s, SiMe₂), 0.86 (9H, s, SiBu'), 1.06 (6H, s, gem-Me), 1.12 (1H, ddd, J 13, 4 and 2, 2-H_{eq}), 1.28 (3H, s, 5-Me), 1.51 (1H, t, J 12.5, 2-H_{ax}), 1.81 (1H, dd, J 15 and 9.5, 4-H_{ax}), 1.96 (2H, m, 7-H₂), 2.00 (1H, ddd, J 14.5, 7 and 1.5, 4-H_{eq}), 2.03 (3H, s, OAc), 3.75 (1H, m, 3-H), 4.07 (2H, m, 8-H₂) (Found: M⁺, 356.2360. C₁₉H₃₆O₄Si requires M, 356.2380).

Conversion of epoxide 5b to alkene 12

To a solution of NaI (1.35 g, 9 mmol) in dry acetonitrile (10 ml) was added TMSCl (0.56 ml, 4.5 mmol) at rt and the mixture was stirred at rt for a few minutes. To this mixture was added a solution of the epoxide **5b** (1.07 g, 3 mmol) in dry CH₂Cl₂ (5 ml) at rt. After being stirred at rt for 30 min, the reaction mixture was diluted with Et₂O and washed successively with aq. 1% Na₂S₂O₃ and brine. Evaporation of the dried solvent gave a residue, which was purified by SCC (acetone-hexane, 1:4) to afford the alcohol (542 mg, 80%) as a colorless oil. To a solution of the alcohol (542 mg, 2.4 mmol) in dry CH₂Cl₂ (5 ml) was added Et₃N (0.64 ml, 4.8 mmol), DMAP (586 mg, 4.8 mmol) and a solution of TBSCl (433 mg, 2.9 mmol) in dry CH2Cl2 (3 ml) at rt and the mixture was stirred at rt for 15 h. The reaction mixture was poured into ice-water and extracted with Et₂O. The extracts were washed successively with aq. 5% HCl, saturated ag. NaHCO₃ and brine. Evaporation of the dried extracts gave a residue, which was purified by SCC (Et₂Ohexane, 1:9) to yield 12 (611 mg, 75%; 60% from 5b) as a colorless oil. Spectral data of this compound were identical with those of 12 derived from 11 in this paper.

Rearrangement of epoxide 5a by aminium salt 9

To a solution of the epoxide 5a (178 mg, 0.5 mmol) in CH₂Cl₂ (4 ml) was added aminium salt 9^8 (42 mg, 0.05 mmol) at rt and the mixture was stirred at rt for 30 min. Evaporation of the reaction mixture gave a residue, which was purified by SCC (Et₂O-hexane, 3:17 \rightarrow acetone-hexane, 1:5) to afford the cyclopentyl compound 8 (112 mg, 63%) and the deprotected compound 13 (36 mg, 30%) as colorless oils, respectively.

Cyclopentyl compound 8. $[a]_D^{22}$ +10.0 (c 1.00, MeOH); ν_{max}/cm^{-1} 1736 (OAc), 1699 (C=O); δ_H (300 MHz) 0.01 (6H, s, SiMe₂), 0.82 (3H, s, 1-Me_q), 0.86 (9H, s, SiBu^r), 1.14 (3H, s,

1-Me_β), 1.29 (3H, s, 5-Me), 1.44 (1H, dd, J 14 and 3, 4-H_β), 1.66 (1H, dd, J 13.5 and 4.5, 2-H_β), 1.90 (1H, dd, J 13.5 and 7.5, 2-H_α), 2.01 (3H, s, OAc), 2.71 (1H, dd, J 14 and 8, 4-H_α), 2.75 (2H, t, J 6.5, 7-H₂), 4.32 (2H, td, J 6.5 and 2, 8-H₂), 4.35 (1H, m, 3-H) (Found: M⁺, 356.2356. C₁₉H₃₆O₄Si requires M, 356.2380).

Deprotected compound 13. $[a]_D^{23} + 5.00$ (c 1.00, MeOH); $v_{\rm max}/cm^{-1}$ 3612 and 3468 (OH), 1736 (OAc), 1701 (C=O); $\delta_{\rm H}$ (300 MHz) 0.81 (3H, s, 1-Me_α), 1.14 (3H, s, 1-Me_β), 1.28 (3H, s, 5-Me), 1.43 (1H, dd, J 14.5 and 3.5, 4-H_β), 1.66 (1H, dd, J 13.5 and 4.5, 2-H_β), 1.95 (1H, dd, J 13.5 and 8, 2-H_α), 1.98 (3H, s, OAc), 2.74 (2H, t, J 6, 7-H₂), 2.78 (1H, dd, J 14.5 and 8.5, 4-H_α), 4.27 and 4.31 (each 1H, dt, J 11 and 6.5, 8-H₂), 4.44 (1H, m, 3-H) (Found: M⁺, 242.1535. $C_{13}H_{22}O_4$ requires M, 242.1519).

Reprotection of the alcohol 13

To a solution of the alcohol 13 (145 mg, 0.60 mmol) in dry CH_2Cl_2 (3 ml) was added Et_3N (0.5 ml, 3.6 mmol), DMAP (110 mg, 0.90 mmol) and a solution of TBSCl (106 mg, 0.70 mmol) in dry CH_2Cl_2 (3 ml) at rt and the mixture was stirred at rt for 15 h. The reaction mixture was poured into ice—water, and extracted with Et_2O . The extracts were washed successively with aq. 5% HCl, saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave a residue, which was purified by SCC (Et_2O —hexane, 1:4) to afford 8 (191 mg, 89%) as a colorless oil. Spectral properties of this compound were in agreement with those of the cyclopentyl compound 8 in the above rearrangement.

$3\hbox{-}[(1R,4S)\hbox{-}4-tert\hbox{-Butyldimethylsilyloxy-1,2,2-trimethylcyclopentyl}]\hbox{-}3\hbox{-}\{[(4\hbox{-methoxyphenyl})\hbox{methoxy}]\hbox{methoxy}\} propyl acetate 14$

To a solution of the cyclopentyl compound 8 (255 mg, 0.72 mmol) in MeOH (5 ml) was added NaBH₄ (27.2 mg, 0.72 mmol) at 0 °C and the mixture was stirred at 0 °C for 30 min. The reaction mixture was poured into ice-water, and extracted with Et2O. Standard work-up afforded a residue, which was purified by SCC (Et₂O-hexane, 1:5) to yield the alcohol (200 mg, 78%) as a colorless oil. Pr₂NEt (0.98 ml, 5.60 mmol) and PMBMC1¹¹ (626 mg, 3.36 mmol) were added to a solution of the above alcohol (200 mg, 0.56 mmol) in dry CH₂Cl₂ (2 ml) at rt. After being stirred at rt for 16 h, the reaction mixture was diluted with Et₂O and the organic layer was washed successively with aq. 5% HCl, saturated aq. NaHCO3 and brine. Evaporation of the dried solution gave a residue, which was purified by SCC (acetone-hexane, 1:19) to afford the PMBM ether 14 (229 mg, 80%; 62% from **8**) as a colorless oil; $v_{\text{max}}/\text{cm}^{-1}$ 1732 (OAc), 1612 and 1514 (Ph); $\delta_{\rm H}$ (300 MHz) 0.00 (6H, s, SiMe₂), 0.86 (9H, s, SiBu^r), 0.90, 1.06 and 1.12 (each 3H, s, gem-Me and 5-Me), 1.30 (1H, dd, J 14 and 2, 2-H_B), 1.80 (4H, m, 4-H₂) and 7-H₂), 1.94 (1H, dd, J 14 and 9, 2-H_a), 2.03 (3H, s, OAc), 3.50 (1H, t-like, J 4, 6-H), 3.80 (3H, s, OMe), 4.22 (1H, m, 3-H), 4.24 (2H, m, 8-H₂), 4.52 and 4.60 (each 1H, d, J 11.5, CH₂Ph), 4.71 and 4.82 (each 1H, d, J7, -OCH₂O-), 6.87 and 7.25 (each 2H, d, J 8.5, Ar-H₄) (Found: M⁺, 508.3236. C₂₈H₄₈O₆Si requires M, 508.3232).

3-[(1*R*,4*S*)-4-*tert*-Butyldimethylsilyloxy-1,2,2-trimethylcyclopentyl]-3-{[(4-methoxyphenyl)methoxy]methoxy}propan-1-ol 15

To a suspension of LAH (24 mg, 0.64 mmol) in dry $\rm Et_2O$ (5 ml) was added dropwise a solution of **14** (323 mg, 0.64 mmol) in dry $\rm Et_2O$ (15 ml) at 0 °C. After being stirred at 0 °C for 30 min, the excess of LAH was decomposed by dropwise addition of water. The mixture was extracted with $\rm Et_2O$ and the extracts were washed successively with aq. 5% HCl, saturated aq. NaHCO₃ and brine. Evaporation of the dried solvent gave a residue, which was purified by SCC (acetone–hexane, 1:9) to

afford the alcohol **15** (292 mg, 99%) as a colorless oil; $\nu_{\text{max}}/\text{cm}^{-1}$ 3465 (OH), 1613 and 1514 (Ph); δ_{H} (300 MHz) 0.01 (6H, s, SiMe₂), 0.86 (9H, s, SiBu'), 0.92, 1.05 and 1.13 (each 3H, s, gem-Me and 5-Me), 1.30 (1H, dd, J 14 and 2, 2-H_{β}), 1.78 (4H, m, 4-H₂ and 7-H₂), 1.98 (1H, dd, J 14 and 9, 2-H_{α}), 3.66 (1H, t, J 5.5, 6-H), 3.77 (2H, m, 8-H₂), 3.81 (3H, s, OMe), 4.23 (1H, m, 3-H), 4.52 and 4.68 (each 1H, d, J 11.5, CH₂Ph), 4.81 and 4.87 (each 1H, d, J 6.5, $-\text{OCH}_2\text{O}$ -), 6.89 and 7.27 (each 2H, d, J 8.5, Ar-H₄) (Found: M⁺, 466.3105. C₂₆H₄₆O₅Si requires M, 466.3112).

3-[(1*R*,4*S*)-4-*tert*-Butyldimethylsilyloxy-1,2,2-trimethylcyclopentyl]-3-[(4-methoxyphenyl)methoxy]methoxy}propanal 16

To a solution of the alcohol 15 (125 mg, 0.27 mmol) in DMSO (1 ml) was added a solution of IBX 12 (188 mg, 0.67 mmol) in DMSO (0.67 ml) at rt and the mixture was stirred at rt for 1 h. The reaction mixture was diluted with water (5 ml) and the white precipitate was filtered. The filtrate was extracted with Et₂O. Standard work-up gave a residue, which was purified by SCC (acetone-hexane, 1:9) to provide the aldehyde 16 (116 mg, 93%) as a colorless oil; $v_{\text{max}}/\text{cm}^{-1}$ 1721 (CHO), 1613 and $1514 \text{ (Ph)}; \delta_{H} (300 \text{ MHz}) 0.01 (6H, s, \text{SiMe}_{2}), 0.86 (9H, s, \text{SiBu}'),$ 0.93, 1.06 and 1.12 (each 3H, s, gem-Me and 5-Me), 1.23 (1H, dd, J 13.5 and 2.5, 2-H_β), 1.80 (2H, d, J 7.5, 4-H₂), 1.92 (1H, dd, J 13.5 and 8.5, 2-H_a), 2.37 (1H, dd, J 17 and 2.5, 7-H), 2.78 (1H, ddd, J 17, 7 and 2, 7-H), 3.80 (3H, s, OMe), 4.13 (1H, dd, J7 and 2.5, 6-H), 4.24 (1H, m, 3-H), 4.42 and 4.54 (each 1H, d, J 11.5, CH₂Ph), 4.70 and 4.76 (each 1H, d, J 7, $-OCH_2O_-$), 6.87 and 7.23 (each 2H, d, J 8.5, Ar-H₄), 9.76 (1H, d, J 2, CHO) (Found: M^+ , 464.2967. $C_{26}H_{44}O_5Si$ requires M, 464.2960).

(4E)-6-*tert*-Butyldimethylsilyloxy-1-[(1R,4S)-4-*tert*-butyldimethylsilyloxy-1,2,2-trimethylcyclopentyl]-1-{[(4-methoxy-phenyl)methoxy]methoxy}-4-methylhex-4-en-3-one 18

To a solution of the vinyl bromide 17¹³ (403 mg, 1.52 mmol) in dry Et₂O (4 ml) was added Bu'Li (1.64 M in pentane; 0.93 ml, 1.52 mmol) at -78 °C and the mixture was stirred at -78 °C for 10 min. A solution of the aldehyde 16 (235 mg, 0.51 mmol) in dry Et₂O (6 ml) was added to this mixture at -78 °C for 1 h. After being quenched with saturated aq. NH₄Cl, the mixture was extracted with Et₂O. Standard work-up gave a residue, which was purified by SCC (Et₂O-hexane, 1:4) to afford the adduct (313 mg, 95%) as a colorless oil. Then, to a solution of the adduct (313 mg, 0.48 mmol) in DMSO (1.5 ml) was added a solution of IBX 12 (337 mg, 1.20 mmol) in DMSO (1.2 ml) at rt and the mixture was stirred at rt for 16 h. The reaction mixture was diluted with water (5 ml) and the white precipitate was filtered. The filtrate was extracted with Et₂O. Standard work-up gave a residue, which was purified by SCC (Et₂O-hexane, 3:17) to provide the conjugated ketone 18 (197 mg, 63%; 60% from **16**) as a colorless oil; $v_{\text{max}}/\text{cm}^{-1}$ 1669 (conj. C=O), 1613 and 1514 (Ph); $\delta_{\rm H}$ (300 MHz) -0.02 and 0.09 (each 6H, s, SiMe₂ × 2), 0.86 and 0.92 (each 9H, s, SiBu $^{t} \times 2$), 0.96, 1.06 and 1.16 (each 3H, s, gem-Me and 5-Me), 1.18 (1H, m, 2-H_{β}), 1.63 (3H, d, J1, 9-Me), 1.79 (2H, d, J7, 4-H₂), 1.92 (1H, dd, J14 and 9, 2-H_a), 2.45 (1H, dd, J 17 and 2, 7-H), 3.16 (1H, dd, J 17 and 7, 7-H), 3.79 (3H, s, OMe), 4.26 (4H, m, 3-H, 6-H and 11-H₂), 4.38 and 4.65 (each 1H, d, J12, CH₂Ph), 4.62 and 4.65 (each 1H, d, J6.5, -OCH₂O-), 6.53 (1H, tg-like, J 5 and 1, 10-H), 6.83 and 7.17 (each 2H, d, J 9, Ar-H₄) (Found: M⁺, 648.4236. C₃₆H₆₄O₆Si₂ requires M, 648.4244).

(4*E*)-6-*tert*-Butyldimethylsilyloxy-1-[(1*R*,4*S*)-4-*tert*-butyldimethylsilyloxy-1,2,2-trimethylcyclopentyl]-1-hydroxy-4-methylhex-4-en-3-one 19

To a solution of the ketone 18 (197 mg, 0.30 mmol) dissolved in a mixture of CH_2Cl_2 – H_2O (18 : 1, 6.54 ml) was added DDQ^{11b}

(86 mg, 0.36 mmol). After being stirred at rt for 2 h, the reaction mixture was filtered through Celite. Evaporation of the filtrate gave a residue, which was purified by SCC (Et₂O–hexane, 1 : 9) to afford the alcohol **19** (133 mg, 88%) as a colorless oil; λ_{max} /nm 228; ν_{max} /cm⁻¹ 3558 (OH), 1659 (conj. C=O); δ_{H} (300 MHz) 0.01 and 0.11 (each 6H, s, SiMe₂ × 2), 0.87 and 0.93 (each 9H, s, SiBu^t × 2), 0.98, 1.10 and 1.11 (each 3H, s, *gem*-Me and 5-Me), 1.29 (1H, dd, *J* 14 and 2.5, 2-H_β), 1.74 (3H, d, *J* 1, 9-Me), 1.78 (2H, d, *J* 7, 4-H₂), 1.88 (1H, dd, *J* 13.5 and 9, 2-H_α), 2.73 (1H, s, OH), 2.71 and 2.90 (each 1H, d-like, *J* 3, 7-H₂), 4.04 (1H, m, 6-H), 4.25 (1H, m, 3-H), 4.42 (2H, br d, *J* 5, 11-H₂), 6.64 (1H, td-like, *J* 5 and 1, 10-H) (Found: M⁺, 498.3531. C₂₇H₅₄O₄Si₂ requires *M*, 498.3557).

Oxidation of the \beta-hydroxy ketone 19

To a solution of the alcohol **19** (200 mg, 0.40 mmol) in dry DMSO (14 ml) was added Ac_2O (7 ml) at rt and the mixture was stirred at rt for 16 h. The reaction mixture was poured into icewater and extracted with Et_2O . The extracts were washed with water and saturated aq. NaHCO₃ and brine. Evaporation of the dried solvent gave a residue, which was purified by SCC (Et_2O -hexane, 1:19) to afford the conjugated β -diketone **20** (71 mg, 36%) and the acetate **21** (72 mg, 33%) as colorless oils, respectively.

(2*E*,4*E*)-6-tert-Butyldimethylsilyloxy-1-[(1*R*,4*S*)-4-tert-butyldimethylsilyloxy-1,2,2-trimethylcyclopentyl]-3-hydroxy-4-methylhexa-2,4-dienone 20. [a] $_{2}^{23}$ –23.4 (c 0.47, CHCl $_{3}$); λ_{max} /nm 305; ν_{max} /cm $^{-1}$ 1583 (hydrogen-bonded conj. C=O); δ_{H} (300 MHz) 0.03 and 0.09 (each 6H, s, SiMe $_{2}$ × 2), 0.81 (3H, s, 1-Me $_{a}$), 0.88 and 0.92 (each 9H, s, SiBu' × 2), 1.15 (3H, s, 1-Me $_{β}$), 1.30 (3H, s, 5-Me), 1.51 (1H, dd, J 14 and 2.5, 4-H $_{β}$), 1.69 (1H, dd, J 13.5 and 4.5, 2-H $_{β}$), 1.80 (3H, d, J 1, 9-Me), 1.98 (1H, dd, J 13.5 and 7.5, 2-H $_{a}$), 2.73 (1H, dd, J 14 and 8, 4-H $_{a}$), 4.38 (1H, m, 3-H), 4.39 (2H, d, J 6, 11-H $_{2}$), 5.81 (1H, s, 7-H), 6.59 (1H, t, J 6, 10-H), 16.15 (1H, s, enolic OH) (Found: M $_{+}^{+}$, 496.3412. C₂₇H₅₂O₄Si $_{2}$ requires M, 496.3407).

(*4E*)-1-Acetyloxy-6-*tert*-butyldimethylsilyloxy-1-[(1*R*,4*S*)-4-*tert*-butyldimethylsilyloxy-1,2,2-trimethylcyclopentyl]-4-methyl-hex-4-en-3-one 21. [α]_D²⁷ +10.0 (c 0.40, MeOH); λ _{max}/nm 231; ν _{max}/cm⁻¹ 1668 (conj. C=O); δ _H (300 MHz) 0.02 and 0.11 (each 6H, s, SiMe₂ × 2), 0.85 and 0.93 (each 9H, s, SiBu' × 2), 0.99, 1.07 and 1.13 (each 3H, s, *gem*-Me and 5-Me), 1.16 (1H, m, 2-H_β), 1.76 (3H, d, *J* 1, 9-Me), 1.78 (2H, d, *J* 8, 4-H₂), 1.93 (1H, dd, *J* 14 and 9, 2-H_α), 2.14 (3H, s, OAc), 2.59 (1H, dd, *J* 17.5 and 2.5, 7-H), 3.07 (1H, dd, *J* 17.5 and 6.5, 7-H), 4.23 (2H, m, 3-H and 6-H), 4.42 (2H, d, *J* 5, 11-H₂), 6.66 (1H, td-like, *J* 5 and 1, 10-H) [Found: (M – Ac)⁺, 497.3463. C₂₇H₅₃O₄Si₂ requires *M* – Ac, 497.3485].

(2*E*,4*E*)-3-Acetyloxy-6-*tert*-butyldimethylsilyloxy-1-[(1*R*,4*S*)-4-*tert*-butyldimethylsilyloxy-1,2,2-trimethylcyclopentyl]-4-methylhexa-2,4-dienone 22

Ac₂O (0.5 ml) was added to a solution of the β-diketone **20** (104 mg, 0.21 mmol), Et₃N (0.04 ml, 0.29 mmol) and DMAP (28 mg, 0.23 mmol) in dry CH₂Cl₂ (1 ml) at rt. After being stirred at rt for 30 min, the mixture was poured into ice—water and extracted with Et₂O. The extracts were washed successively with aq. 5% HCl, saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave a residue, which was purified by SCC (Et₂O–hexane, 1 : 4) to afford the enol acetate **22** (104 mg, 92%) as a colorless oil; $[a]_D^{20} - 10.3$ (c 0.98, CHCl₃); $\lambda_{\text{max}}/\text{nm}$ 277; $\nu_{\text{max}}/\text{cm}^{-1}$ 1766 (OAc), 1673 (conj. C=O), 1586 (conj. C=C); δ_{H} (300 MHz) 0.01 and 0.07 (each 6H, s, SiMe₂ × 2), 0.86 and 0.90 (each 9H, s, SiBu^t × 2), 0.82, 1.16 and 1.31 (each 3H, s, gem-Me and 5-Me), 1.42 (1H, m, 4-H_β), 1.68 (1H, dd, J 13 and 5, 2-H_β), 1.80 (3H, d, J 1, 9-Me), 1.88 (1H, dd, J 13 and 7.5, 2-H), 2.31 (3H, s, OAc), 2.78 (1H, m, 4-H_θ), 4.33 (1H, m, 3-H),

4.38 (2H, d, J 5.5, 11-H₂), 6.20 (1H, m, 10-H), 6.25 (1H, s, 7-H) (Found: M^+ , 538.3509. $C_{29}H_{54}O_5Si_2$ requires M, 538.3512).

(2E,4E)-3-Acetyloxy-1-[(1R,4S)-4-tert-butyldimethylsilyloxy-1,2,2-trimethylcyclopentyl]-6-hydroxy-4-methylhexa-2,4-dienone

A solution of TBAF (1 M in THF; 0.19 ml, 0.19 mmol) was added to a solution of the acetate **22** (104 mg, 0.19 mmol) in dry THF (4 ml) at 0 °C and the mixture was stirred at 0 °C for 1 h. The reaction mixture was diluted with Et₂O. Standard work-up gave a residue, which was purified by SCC (Et₂O-hexane, 1 : 4 \rightarrow acetone–hexane, 1 : 4) to afford the alcohol **23** (75 mg, 92%) as a colorless oil; $[a]_D^{12} + 0.98$ (c 1.02, CHCl₃); λ_{max} /nm 277; ν_{max} /cm⁻¹ 3604 and 3508 (OH), 1767 (OAc), 1674 (conj. C=O), 1587 (conj. C=C); δ_{H} (300 MHz) 0.01 (6H, s, SiMe₂), 0.86 (9H, s, SiBu'), 0.82 and 1.16 (each 3H, s, *gem*-Me), 1.31 (3H, s, 5-Me), 1.42 (1H, m, 4-H_{μ}), 1.68 (1H, dd, J 14 and 5, 2-H_{μ}), 1.85 (3H, s, 9-Me), 1.87 (1H, m, 2-H_{μ}), 2.31 (3H, s, OAc), 2.78 (1H, m, 4-H_{μ}), 4.33 (1H, m, 3-H), 4.38 (2H, d, J 6, 11-H₂), 6.25 (1H, m, 10-H), 6.28 (1H, s, 7-H) (Found: M⁺, 424.2632. C₂₃H₄₀O₅Si requires M, 424.2647).

(2*E*,4*E*)-4-Acetyloxy-6-[(1*R*,4*S*)-4-hydroxy-1,2,2-trimethyl-cyclopentyl]-3-methyl-6-oxohexa-2,4-dienal 10b

To a solution of the alcohol 23 (54 mg, 0.13 mmol) in DMSO (0.25 ml) was added a solution of IBX 12 (72 mg, 0.26 mmol) in DMSO (0.26 ml) at rt and the mixture was stirred at rt for 1 h. The reaction mixture was diluted with water (3 ml) and the white precipitate was filtered. The filtrate was extracted with Et₂O. Standard work-up gave a residue, which was purified by SCC (acetone-hexane, 3:17) to afford the aldehyde (33 mg, 60%) as a pale yellow oil. A mixture of 47% aq HF-CH₃CN (1:19; 0.4 ml) was added to a solution of this aldehyde (33 mg, 0.08 mmol) in a mixture of CH₃CN-THF (9:1; 4 ml) at rt. After being stirred at rt for 1.5 h, the reaction mixture was quenched with saturated aq. NaHCO₃ and extracted with Et₂O. Standard work-up gave a residue, which was purified by SCC (acetone-hexane, 3:7) to provide the desilylated aldehyde 10b (22 mg, 92%; 55% from 23) as a pale yellow oil; $[a]_D^{26} - 10.0$ $(c \ 0.40, \text{CHCl}_3); \ \lambda_{\text{max}}/\text{nm} \ 283; \ \nu_{\text{max}}/\text{cm}^{-1} \ 3611 \ \text{and} \ 3476 \ (\text{OH}),$ 1773 (OAc), 1674 (conj. C=O and conj. CHO), 1588 (conj. C=C); $\delta_{\rm H}$ (300 MHz) 0.84 (3H, s, 1-Me_a), 1.19 (3H, s, 1-Me_B), 1.35 (3H, s, 5-Me), 1.46 (1H, dd, J 14.5 and 3, 4-H_B), 1.70 (1H, dd, J 14 and 5, 2-H_{β}), 1.96 (1H, dd, J 14 and 8, 2-H_{α}), 2.31 and 2.33 (each 3H, s, 9-Me and OAc), 2.85 (1H, dd, J 14.5 and 8.5, 4-H_a), 4.47 (1H, m, 3-H), 6.37 (1H, d, J 7.5, 10-H), 6.60 (1H, s, 7-H), 10.17 (1H, d, J 7.5, 11-H) (Found: M+, 308.1648. $C_{17}H_{24}O_5$ requires M, 308.1625).

(2*E*,4*E*,6*E*,8*E*,10*E*,12*E*)-12-Hydroxy-14-[(1*R*,4*S*)-4-hydroxy-1,2,2-trimethylcyclopentyl]-2,7,11-trimethyl-14-oxotetradeca-2,4,6,8,10,12-hexaenal 26

An acidic solution (0.1 ml) prepared from PTSA (500 mg) and H₃PO₄ (725 mg) in MeOH (37.5 ml) and trimethyl orthoformate (0.1 ml, 0.91 mmol) were added to a solution of the Wittig salt 24¹⁴ (35.6 mg, 0.08 mmol) in MeOH (1 ml). The mixture was stirred at rt for 1 h and neutralized with NaOMe (1 M in MeOH) until just before the red color of an ylide appeared. Evaporation of the solvent provided the Wittig salt 25, to which a solution of the aldehyde 10b (9.8 mg, 0.03 mmol) in propan-2ol (1.5 ml) was added. To the mixture, a basic solution (1 ml) of KOH (500 mg) dissolved in water (1 ml) and propan-2-ol (10 ml) was added dropwise at 0 °C. After being stirred at 0 °C for 1 h, the mixture was poured into ice-water, and extracted with Et₂O. The extracts were shaken with aq. 5% HCl until the fine structure disappeared on UV-VIS, washed successively with saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts provided a residue, which was purified by SCC (acetone-hexane, 1:4) to afford an isomeric mixture of apocarotenal 26 (12 mg, 92%) in which the main product was all-E isomer. Purification of a part of the isomeric mixture by PTLC (acetone-hexane, 3:7) provided the all-E isomer as an orange solid; $\lambda_{\text{max}}/\text{nm}$ 419 and 440(sh); $\nu_{\text{max}}/\text{cm}^{-1}$ 3610 and 3476 (OH), 1665 (conj. CHO), 1605 and 1568 (conj. C=C or hydrogenbonded conj. C=O); $\delta_{\rm H}$ (300 MHz) 0.85 (3H, s, 1-Me_a), 1.19 (3H, s, 1-Me_β), 1.35 (3H, s, 5-Me), 1.55 (1H, dd, J 14.5 and 3, $4-H_{\beta}$), 1.72 (1H, dd, J 13.5 and 4, 2-H_{\beta}), 1.90 (3H, s, 13'-Me), 2.00 (3H, s, 9-Me), 2.06 (3H, s, 13-Me), 2.09 (1H, dd, J 13.5 and 8, 2-H_a), 2.88 (1H, dd, J 14.5 and 8.5, 4-H_a), 4.53 (1H, m, 3-H), 5.87 (1H, s, 7-H), 6.41 (1H, d, J 11.5, 14-H), 6.65 (1H, d, J 15, 12-H), 6.74 (1H, dd, J 15 and 10.5, 11-H), 6.77 (1H, dd, J 14.5 and 11.5, 15'-H), 6.97 (1H, d, J 11.5, 14'-H), 7.03 (1H, dd, J 14.5 and 11.5, 15-H), 7.23 (1H, d, J 10.5, 10-H), 9.48 (1H, s, 12'-H) (Found: M^+ , 398.2439. $C_{25}H_{34}O_4$ requires M, 398.2458).

Synthesis of mytiloxanthin

A basic solution (3 ml) of KOH (500 mg) dissolved in water (1 ml) and propan-2-ol (10 ml) was added dropwise to a solution of the apocarotenal **26** (11.7 mg, 0.03 mmol) and the Wittig salt **27** ¹⁵ (61 mg, 0.12 mmol) in propan-2-ol (6 ml) at 0 °C. After being stirred at 0 °C for 30 min, the reaction mixture was extracted with Et₂O and washed with saturated aq. NH₄Cl and brine. Evaporation of the dried extracts gave a residue, which was purified by SCC (acetone–hexane, 3 : 7) to afford an isomeric mixture of mytiloxanthin (5.2 mg, 30%). Purification of a part of the isomeric mixture by PHPLC [CHEMCOSORB 7ODS-H 1.0×30 cm; H₂O–MeOH, 4 : 96; 460 nm detect.] provided the all-*E* isomer **1**, 9*Z* one **28** and 9*Z*,11*Z* one **29** as red solids respectively, in a pure state. Spectral properties of the synthetic all-*E* isomer **1** and 9*Z* one **28** were in agreement with those of a natural specimen.⁴

all-E Isomer 1. CD (Et₂O)/nm ($\Delta \varepsilon$) 230 (-0.5), 275 (0), 294 (+0.7), 310 (0), 360 (-0.3); $\lambda_{\text{max}}/\text{nm}$ 470, $\lambda_{\text{max}}(\text{Et}_2\text{O})/\text{nm}$ 467; $v_{\rm max}/{\rm cm}^{-1}$ 3530 and 3321 (OH), 1602 (hydrogen-bonded conj. C=O); $\delta_{\rm H}$ (500 MHz) 0.85 (3H, s, 1'-Me_a), 1.14 (3H, s, 1-Me_{ax}), $1.19 (3H, s, 1'-Me_B), 1.20 (3H, s, 1-Me_{eq}), 1.35 (3H, s, 5'-Me),$ 1.45 (1H, t, J 11.5, 2-H_{ax}), 1.55 (1H, m, 4'-H_B), 1.71 (1H, dd, J 13.5 and 4, 2'-H_B), 1.83 (1H, m, 2-H_{eq}), 1.92 (3H, s, 5-Me), 1.98 (6H, s, 13-Me and 13'-Me), 1.99 (3H, s, 9'-Me), 2.01 (3H, s, 9-Me), 2.07 (1H, m, 4- H_{ax}), 2.09 (1H, dd, J 13.5 and 8, 2'- H_{ay}), 2.43 (1H, br dd, J 18 and 5.5, 4-H_{eq}), 2.88 (1H, dd, J 14.5 and 9, 4'-H_a), 4.00 (1H, m, 3-H), 4.52 (1H, m, 3'-H), 5.86 (1H, s, 7'-H), 6.28 (1H, d, J 11.5, 14-H), 6.36 (1H, d, J 15, 12-H), 6.38 (1H, d, J 10.5, 14'-H), 6.46 (1H, d, J 11.5, 10-H), 6.55 (1H, dd, J 15 and 11.5, 11-H), 6.60 (1H, dd, J 15 and 10.5, 11'-H), 6.64 (1H, dd, J 14 and 11, 15'-H), 6.65 (1H, d, J 15.5, 12'-H), 6.71 (1H, dd, J 14 and 11.5, 15-H), 7.23 (1H, d, J 10.5, 10'-H) (Found: M^+ , 598.4016. $C_{40}H_{54}O_4$ requires M, 598.4025).

9Z-Isomer 28. CD (Et₂O)/nm ($\Delta \varepsilon$) 230 (-0.8), 247 (0), 258 (+1.0), 280 (0), 300 (-0.3), 310 (0), 350 (+1.0), 370 (0); $\lambda_{\text{max}}/\text{nm}$ 467, 358 $\lambda_{\text{max}}(\text{Et}_2\text{O})/\text{nm}$ 465, 358; $\nu_{\text{max}}/\text{cm}^{-1}$ 3530 and 3321 (OH), 1602 (hydrogen-bonded conj. C=O); $\delta_{\rm H}$ (500 MHz) 0.85 (3H, s, 1'-Me_{α}), 1.19 (6H, s, 1-Me_{ax} and 1'-Me_{β}), 1.26 (3H, s, 1-Me_{eq}), 1.35 (3H, s, 5'-Me), 1.48 (1H, t, J 12, 2-H_{ax}), 1.56 (1H, m, $4'-\dot{H}_B$), 1.72 (1H, dd, J 13.5 and 4.5, 2'- H_B), 1.93 (1H, ddd, J 11.5, 3 and 2, 2-H_{eq}), 1.95 (3H, s, 13-Me), 1.97 (6H, s, 5-Me and 9'-Me), 1.99 (3H, s, 13'-Me), 2.01 (3H, s, 9-Me), 2.09 (1H, dd, J 14 and 8, 2'- H_a), 2.10 (1H, m, 4- H_{ax}), 2.46 (1H, br dd, J 17.5 and 4.5, 4-H_{eq}), 2.88 (1H, dd, J 14.5 and 9, 4'-H_a), 4.01 (1H, m, 3-H), 4.53 (1H, m, 3'-H), 5.86 (1H, s, 7'-H), 6.27 (1H, d, J 11, 14-H), 6.30 (1H, d, J 11.5, 10-H), 6.35 (1H, d, J 15.5, 12-H), 6.37 (1H, d, J 10.5, 14'-H), 6.63 (1H, dd, J 15.5 and 12, 15'-H), 6.64 (1H, dd, J 15 and 10.5, 11'-H), 6.65 (1H, d, J 15, 12'-H), 6.71 (1H, dd, J 14 and 11, 15-H), 6.87 (1H, dd, J 15 and 11, 11-H), 7.23 (1H, d, J 10.5, 10'-H) (the cross peak was observed between 11-H and 5-Me in the NOESY spectrum) (Found: M^+ , 598.4001. $C_{40}H_{34}O_4$ requires M, 598.4025).

9Z,11Z-Isomer 29. $\lambda_{\text{max}}/\text{nm}$ 463 and 296, $\lambda_{\text{max}}(\text{Et}_2\text{O})/\text{nm}$ 460, 447, 294; $v_{\text{max}}/\text{cm}^{-1}$ 3530 and 3321 (OH), 1602 (hydrogenbonded conj. C=O); $\delta_{\rm H}$ (500 MHz) 0.83 (3H, s, 1'-Me_a), 1.15 $(3H, s, 1-Me_{ax}), 1.17 (3H, s, 1'-Me_{\beta}), 1.21 (3H, s, 1-Me_{eq}), 1.33$ (3H, s, 5'-Me), 1.45 (1H, t, J 12, 2-H_{ax}), 1.56 (1H, m, 4'-H_β), 1.70 (1H, dd, J 14 and 5, 2'-H_{β}), 1.83 (1H, m, 2-H_{eq}), 1.93 (3H, s, 5-Me), 1.96 (3H, s, 9'-Me), 1.97 (3H, s, 13'-Me), 2.01 (3H, s, 9-Me), 2.05 (1H, m, 4-H_{ax}), 2.07 (1H, dd, J 13.5 and 8, 2'-H_a), 2.08 (3H, s, 13-Me), 2.43 (1H, br dd, J 17 and 5.5, 4-H_{eq}), 2.86 $(1H, dd, J 14.5 \text{ and } 8.5, 4'-H_a), 3.99 (1H, m, 3-H), 4.51 (1H, m, 3-H)$ 3'-H), 5.84 (1H, s, 7'-H), 5.95 (1H, d, J 12.5, 12-H), 6.27 (1H, d, J 10, 14-H), 6.36 (1H, d, J 10.5, 14'-H), 6.50 (1H, t, J 12.5, 11-H), 6.58 (1H, dd, J 15 and 10.5, 11'-H), 6.61 (1H, dd, J 15 and 10.5, 15'-H), 6.63 (1H, d, J 15, 12'-H), 6.66 (1H, dd, J 15 and 10.5, 15-H), 6.78 (1H, d, J 12.5, 10-H), 7.21 (1H, d, J 10.5, 10'-H) (the cross peak was observed between 11-H and 12-H in the NOESY spectrum) (Found: M+, 598.4018. C₄₀H₅₄O₄ requires M, 598.4025).

Acknowledgements

We thank Dr T. Maoka, Kyoto Pharmaceutical University for his kind gift of spectral data on natural mytiloxanthins. We are also grateful for the chemical support from Drs U. Hengartner and K. Bernherd, Hoffmann-La Roche Ltd., Basel, Switzerland.

References

- 1 Part 7: C. Tode, Y. Yamano and M. Ito, *J. Chem. Soc., Perkin Trans.* 1, 2001, 3338.
- 2 B. T. Scheer, J. Biol. Chem., 1940, 136, 275.
- 3 (a) A. K. Chopra, G. P. Moss and B. C. L. Weedon, *J. Chem. Soc., Chem. Commun.*, 1977, 467; (b) A. K. Chopra, A. Khare, G. P. Moss and B. C. L. Weedon, *J. Chem. Soc., Perkin Trans. 1*, 1988, 1383; (c) B. C. L. Weedon, *Pure Appl. Chem. Soc.*, 1973, 35, 113.
- 4 T. Maoka and Y. Fujiwara, J. Jpn. Oil Chem. Soc., 1996, 45, 667.
- 5 (a) Y. Yamano, C. Tode and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1996, 1337; (b) Y. Yamano, C. Tode and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1998, 2569.
- 6 C. Tode, Y. Yamano and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1999, 1625
- 7 C. Tode, Y. Yamano and M. Ito, Chem. Pharm. Bull., 2000, 48, 1833.
- 8 L. Lopez, G. Mele, V. Fiandanese, C. Cardellicchio and A. Nacci, *Tetrahedron*, 1994, **50**, 9097.
- 9 Y. Yamano and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1993, 1599.
- 10 R. Caputo, L. Mangoni, O. Neri and G. Palumbo, *Tetrahedron Lett.*, 1981, 22, 3551.
- 11 (a) T. Benneche, P. Strande and K. Undheim, Synthesis, 1983, 762; (b) A. P. Kozikowski and J.-P. Wu, Tetrahedron Lett., 1987, 28, 5125.
- 12 M. Frigerio, M. Santagostino, S. Sputore and G. Palmisano, J. Org. Chem., 1995, 60, 7272.
- (a) M. Schlosser and E. Hammer, *Helv. Chim. Acta*, 1974, **57**, 2547;
 (b) A. R. de Lera, B. Iglesias, J. Rodríguez, R. Alvarez, S. López, X. Villanueva and E. Padrós, *J. Am. Chem. Soc.*, 1995, **117**, 8220.
- 14 K. Bernhard, F. Kienzle, H. Mayer and R. K. Müller, *Helv. Chim. Acta*, 1980, **63**, 1473.
- 15 E. Widmer, M. Soukup, R. Zell, E. Broger, H. P. Wagner and M. Imfeld, Helv. Chim. Acta, 1990, 73, 861.
- 16 Y. Yamano, C. Tode and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1995, 1895